An efficient local coupled cluster method for accurate thermochemistry of large systems.
نویسندگان
چکیده
An efficient local coupled cluster method with single and double excitation operators and perturbative treatment of triple excitations [DF-LCCSD(T)] is described. All required two-electron integrals are evaluated using density fitting approximations. These have a negligible effect on the accuracy but reduce the computational effort by 1-2 orders of magnitude, as compared to standard integral-direct methods. Excitations are restricted to local subsets of non-orthogonal virtual orbitals (domain approximation). Depending on distance criteria, the correlated electron pairs are classified into strong, close, weak, and very distant pairs. Only strong pairs, which typically account for more than 90% of the correlation energy, are optimized in the LCCSD treatment. The remaining close and weak pairs are approximated by LMP2 (local second-order Mo̸ller-Plesset perturbation theory); very distant pairs are neglected. It is demonstrated that the accuracy of this scheme can be significantly improved by including the close pair LMP2 amplitudes in the LCCSD equations, as well as in the perturbative treatment of the triples excitations. Using this ansatz for the wavefunction, the evaluation and transformation of the two-electron integrals scale cubically with molecular size. If local density fitting approximations are activated, this is reduced to linear scaling. The LCCSD iterations scale quadratically, but linear scaling can be achieved by neglecting some terms involving contractions of single excitations. The accuracy and efficiency of the method is systematically tested using various approximations, and calculations for molecules with up to 90 atoms and 2636 basis functions are presented.
منابع مشابه
Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies
Related Articles Basis set convergence of explicitly correlated double-hybrid density functional theory calculations J. Chem. Phys. 135, 144119 (2011) An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit J. Chem. Phys. 135, 144117 (2011) An efficient local coupled cluster method for accurate thermochemistry of large systems J. Ch...
متن کاملAccurate thermochemistry from explicitly correlated distinguishable cluster approximation.
An explicitly correlated version of the distinguishable-cluster approximation is presented and extensively benchmarked. It is shown that the usual F12-type explicitly correlated approaches are applicable to distinguishable-cluster theory with single and double excitations, and the results show a significant improvement compared to coupled-cluster theory with singles and doubles for closed and o...
متن کاملThe Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the ‘Right Answer for the Right Reason’
Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large ...
متن کاملBenchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields
A benchmark ab initio study on the thermochemistry of the trans-HNNH, cisHNNH, and H2NN isomers of diazene has been carried out using the CCSD(T) coupled cluster method, basis sets as large as [7s6p5d4f3g2h/5s4p3d2f1g], and extrapolations towards the 1-particle basis set limit. The effects on innershell correlation and of anharmonicity in the zero-point energy were taken into account: accurate ...
متن کاملA fast doubly hybrid density functional method close to chemical accuracy using a local opposite spin ansatz.
We develop and validate the XYGJ-OS functional, based on the adiabatic connection formalism and Görling-Levy perturbation theory to second order and using the opposite-spin (OS) ansatz combined with locality of electron correlation. XYGJ-OS with local implementation scales as N(3) with an overall accuracy of 1.28 kcal/mol for thermochemistry, bond dissociation energies, reaction barrier heights...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 135 14 شماره
صفحات -
تاریخ انتشار 2011